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Method for calculating the heat and momentum fluxes of inhomogeneous fluids
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We present a method for calculating the heat and momentum fluxes of general fluids away from equilibrium.
Our method is capable of resolving strongly inhomogeneous nonequilibrium flows, and applicable to three-
dimensional problems. Our flux expressions correspond to the flux definitions originally suggested by Irving
and Kirkwood[J. Chem. Phys18, 817 (1950] and are equivalent to the method of plafiehys. Rev. E48,
4110(1993] used to calculate flow in a simple geometry. Nonequilibrium molecular dynamics simulations are
performed showing that our method reveals a significant heat transfer in the upstream direction due to the
so-called plane peculiar velocity In a general geometry, our method may resolve features such as stress
concentration near edges and flux gradients parallel to the flow.

DOI: 10.1103/PhysRevE.70.061205 PACS nuniberd7.17+e, 05.10-a, 44.05+e

= X @ -0U;af -

I. INTRODUCTION N
=1

The flux of heat and momentum provides essential infor-
mation in the understanding of fluid dynamic behavior, and N
there is growing interest in the properties of inhomogeneous - > F(0; = 0) .Ejkojkg(r_ i)t ),
fluids, which are fundamental to many nanosystems. These i k(#))
fluxes can be directly related to the microscopic constituents (1b)
of a system, such as molecules, through the use of statistical
mechanics. The virial approach provides an equation for thehere
pressure of a homogeneous flfild. A more direct approach, 1 1
however, is to specify the mechanical contributions of the U= _m|5j - ﬁ(rj)|2+ => bik, (2)
molecules to these fluxes, which originate from two different 2 27
types of molecular action. One is the kinetic component,
which comes from the transport of molecules, and the othef S i
the potential component, manifested through molecular intert® the distribution functionf:
actions. Real fluid molecules, which have finite size and
many-body interactions, are difficult to define clearly on the (a;f)= f dr¥Ndp*Na(r3N, p2N, D) f(r3N, p3N ).
contributions. Even for a monatomic fluid that interacts
through pairwise interactions, there is still a problem withThe termsr3N and p3N represent the 8 coordinates and 8
the potential components. For a given infinitesimal area, wenomenta of the system, respectively. A@g is given by
need to determine which pair contributes to the flux through )
the potential. The simplest choice would be a pair whose line o 1—£F- ,i+...+i - 9 " te (3)
of center meets at a point within the area of interest. Using Ik 21 K 57 n\ kK ap '
this definition, Irving and Kirkwood derived hydrodynamic o o .
equations employing classical statistical mechanics and o the above equations, k are the indices of the particle,

tained expressions for the pressure tensor and heat flux velS. the total number of particles in the system, ands the
tor of [2,3] mass of the particles. The termisandr; are the velocity and

position of particlej, respectivelyfi(r) is the streaming ve-
locity at positionr, rj is the position of particlé relative to

N

NI

nd(a;f) represents the ensemble averaga @fith respect

N that of particlej, andF;, is the intermolecular force that acts
Pt ={ > m(v; = U)(v; — U)&(F; = 1) on particlek from particlej. The termg, is the intermolecu-
=1 lar potential. However, there is no unique definition of the
L ) potential contribution to the fluxes. For example, Harashima
= FFkORd(F=1);f ), (1a) suggests that the molecules inside a prism contribute to the
277 k#i) fluxes on the prism base area when they interact with any
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molecule on the other side of the boundary surface that con- 1 1 N
tains the base arefd]. There are also many other choices Py,(y) = A im= > > Ml 4i(t,) — U (y)Isgrivy(t; )]

that all conform to the conservation equatigbg However, T2 To<t <7 j=1
the definition of Harashima may not be rob{&}. Another (NN
study proposed an additional criterion for a unique definition, - Fo[sgrly = y;) = sgrly - 1 ( ,
which results in the expressions of Irving and Kirkwoad. 4321 ke1(#)
Meanwhile, it can be seen that E@.) requires the en- (5a)

semble average. This results from the derivation of E&g.
where the mass, momentum, and energy densities are ini- . L N
tially defined according to the ensemble average with respect 3(y) =1 lim= S S U;(t;)sgrivydt )]

to the distribution function. For example, the density is given A = To<t,<r j=1
by 1 N N ‘
N -2 2 5= U] -Fdsgry - y;)
p(F,t) = 2 (ma(F; = 1); ). LD
=1
—sgrly -yl (- (5b)

The procedure is, however, time consuming to implement in

molecular simulations. Alternatively, expressions for the

fluxes can be used to satisfy the conservation equations §t€ré;A is the area of measurementis the coordinate for
any given instant for a defined systd8] the direction normal to the flow, anddenotes, y, orz. The

termt;, is the time when particl¢ crosses the planetimes

N during the time period-, and sgn is the sign function.
P(F,t) = >, m{o;(t) = G(F,H) 1[o;(t) = G(F, ) T8 (1) = F) However, th_e MOP is still Iir_nif[ed i_n that it is derived
j=1 from, and applicable only to, unidirectional flows. The flow
N N direction needs to be tangential to the measurement surface,
- 12 > P F O 8(F - (1) (49  and only part of the flux components is provided: for ex-
2 REELSEL g1 i ) ; h -
=1 k=1(#j) ample, Py,, Py, or J, are not given in terms of the coordi

nates used in Eq5). In addition, the flux gradients in the
tangential direction to the measurement surface, for example,
the x or z directions, are not considered in the derivation.
While the MOP is a valuable tool for probing many phe-
nomena in inhomogeneous fluids, some problems inevitably

N
J(F0 = 2 [5,(0) - GF,H1U; (0 8(F (0 - 1)
j=1

18 2 .= - e involve the fluxes not resolved well using this method. For
- 52_: _2 TiOF () - [oj(t) - G(F,1)] example, it may be necessary to resolve a flux that varies in
FLIEE=D more than one direction, or the gradient of a flux in the flow
X Oy 8(F = (1)) (4b) direction. One recent study used a method that measures the

potential part of the pressure tensor in a similar manner to
that used in this work11]. The authors of the study, how-
B(/er, relied on physical arguments for introducing this ap-
proach. To the best of our knowledge, there has been no
N other study on this issue published in the literature.
> > We begin with the expressions for instantaneous fluxes,
Py = E maf; =1). Eq. (4), and then we derive the pressure tensor and heat flux
vector that not only accurately represent a strongly inhomo-
These expressions can be evaluated for a single system trgeneous fluid in nonequilibrium state, but also resolve the
jectory, which is particularly useful in molecular simulations. state in a general geometry. The first step is to replace the
However, there remains a critical difficulty in evaluating the operatorO;, by a more manageable operator. The final ex-
operatorOy, using these expressions. This operator acts ompressions correspond to the original flux definition of Irving
the delta function and produces an infinite sum of its derivaand Kirkwood. For the flow in a simple geometry, these are
tives. It becomes increasingly difficult to evaluate higher-equivalent to the MOP. Section Il is devoted to the derivation
order derivatives directly, which, on the other hand, may noof the expressions for fluxes, which are evaluated for two
decay fast enough to be neglected in an inhomogeneougpes of nanoscale fluid flow channels in Sec. Ill. The final
fluid. Often found in the literature is a@;,=1 approxima-  section contains our conclusions.
tion, which is valid only in the cases of homogeneous or
weakly inhomogeneous fluids. Todet al. overcame the Il. THEORETICAL MODELS FOR FLUXES
above situation by adopting measures that include manipula-
tion in the reciprocal spad@®]. They introduced the so-called
“method of plan€és(MOP), which does not require evaluat- In the original derivation of the pressure tensor by Irving
ing Oy [8-10: and Kirkwood[2], the operatoO;, was introduced when the

These equations are based on thstantaneougensity of
the mass, momentum, and energy. For example, the densi
is given by

A. Alternative form of Oy,
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two delta functions according to the positions of two par-tions of the fluxes have a major advantage over previous
ticles were expanded using a given relative position. The firstepresentations in that they enable a direct evaluation of the
few terms of the expansion are relatively easy to evaluategontribution without any truncation of the terms. In the fol-
and are adequate to model homogeneous and weakly inhtewing section, these are elaborated on further, to provide
mogeneous fluids. However, the higher-order derivatives ofmore accessible forms for calculations.

the delta function are increasingly difficult to handle, and

they are of a non-negligible size for highly inhomogeneous B. Pressure tensor and heat flux vector

fluids. The situation may be relieved using an integrated
form of the delta function, since this smoothes out the ex-
treme behavior of the function. It is interesting to note thatP
the integrated version dD;, has already been used in Ref.
[2]. Applying it to the delta function gives the following
relationships:

As in the MOP approach, the fluxes were measured on a
lane across which momentum and energy can be ex-
changed. This can be compared with measurements on a bin.
The measured fluxes are averaged on the plgref a finite
areaAA=Ar Ar; centered af,=(ro4,1op.70,) @S

L P I | G(fot) = (G(FD)an
0 ad(r - a’l’]k) - - 2!er of 1 (Toa*Ara2 FogtArgl2 )
=— dr, drgG(r1),
( ) ] _)) AA I oa—Ar /2 rop~Argl2
J . wherea, B, andy are the indices for the rectangular coordi-
= 0,87 ~F) (6) nates, andy is chosen as the coordinate normal to the plane:
Ik for example,r,=y in the coordinates of Eq5). The time
This can be checked easily from the fact that average is also defined as
9 Cyl"l 1 R t0+7'/2 _
SF=fi—afy)=|1l-afy-—<+..+ Forto) = — Foot).
( jTo jk) atjx aF (n- 1)! G(rOItO) Tfto—r/z dtG(I’O,t)

R (9 n-1 R R . . . . .
« (_ iy T) v la-). @ F|rst,. the kinetic contribution to the pressure ten&, was
considered

Therefore, the delta function acted on ®y, can be replaced N ) . R
by an integrated form of the delta functi¢h5,16. Thus Eq. P(F,t) = > ml;(t) — d(F, [w;(t) - G(F,018F, ) = 1.
(4) can be rewritten as =1

9)
P(r,t) = 2 m(vj — 0)(v; — )8 — ) In the form of components, this is

N
——E E JkF,J dad(F -7, - of}), (89 PV“(r’t)'zm(”j“ Ua) (037~ U) Aja = 1) Ay = 1)

i k(#))
Xorj,—r,).
> . . The termP,, represents the pressure tensor applied inathe
= . — . . — ya
I = 21 (vj ~ WU;8(F; =) direction on a plane normal tg. The average on the plane

gives

N N
1 N
DN ka (v; - J)J dad(r = — arfy), . 1 .
25 J P%(%IFJ\Z Mv; (1) = Uy (Fo, D) ][j,()
(8b) =
. . —u(Fy,1)]Q8(ri (t) = 1,.), 10
where the functional dependence pandt of the variables 00128150 ~Toy) (10
on the right-hand side has been omitted. These representahere(), is defined as

) Ar, Ar, ArB Arg
0= 1, if foa™ "5 <la=<loa* " and fop= 5 <Tip<Tog* ’

0, otherwise.
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Next, an average of Eq10) may need to be taken to make it 1 N 1
more accessible. A usual approach would be to take an averPV(i,t)=-=>, >, ]k(t)FJk(t)f dad(r = rj(t) — arj(1)).
age over a small, but finite, dimensiakr,,, or to use coarse 275 W#) 0

graining in the extra space dlmen3|on This approach is
equivalent to the bin average. The average over the volume
rather than the area can be avoided if coarse graining ovéfith
time is adopted instead. This approach was originally
adopted by MOP, but here it is extended to a more general

geometry. For a particlg that crosses the plane once during ld s d s
a given time period, with a known positian, fixed in space, o ad(F=fj = afy) = ad(r =i~ ljca)
it follows that
O D8T},(0 1) = 2 sarlr, () = 1] XS0, =1, af o),
= ot~ t)sgrivj, (1], (17)
wheret; is the time when particl¢ is atr,. Forv;,# 0, we obtain
1
5(I’jy(t)—l’j):5(tj —t)m. 1
Uiy f dad(r - ar]k)
If particle j crosses pland\, Ith time att=t;(t,—7/2<t;, 0 AA
<t,+7/2), then the time average of E¢LO) over 7 will be 1 1
1 = ﬂﬂlf daé(roy— rjy_ ar]-ky)
Phalfote) = 120 2 mvj(t) = UulFortiy)] ’
Ty, 1 1
= oAty [sartro, = 1y,) = sgrire, = rig))
X[, = Uil ——. (12 e
ir\Hl Yol |ij(tj'|)|
Next, the intermolecular contributio®V, is considered: where(), is defined as
|
1, if there existsy €[0,1] that satisfies
(o Ar, Ar Ar
0, = Moo ™ > <Tjpt al,(=r,) <rg,+ > andr g - —2@ <rigtaryg(=rg <ros+ —2@ ,
0, otherwise.
[
We now obtain where the subscripte for i andt are omitted. If7 corre-

sponds to a given time step solving the equations of motion,

~U _ then the integrand in the second term on the right-hand side
Pra(fot) = AA? k% Fika(D)Qa{sgriro, = 1j,(0)] of Eq. (13) may remain constant, and the operati@nr) [ dt
can be removed. It is straightforward to derive the expression
= SgMiro, ~ Mo} for the heat flux vector in a similar manner:
We can combine both contributions and obtain an expres-
sion for the pressure tensor. It follows that J,(Ft 2 2 [vj,(t;) = u (7,4 U (8, I)| (t T
j UiAll
~ 1
Pofi)=——>2> mM{vj,(t) = U (P8 ) Ilvj () 1 (w72 N
4 AAT it 7 - f d.fz E Jk() [U G(F:f)]
1 (wf2 NN AT e ket
- u,(rt; dt —r - _
Al W(t] TRy f L2 X Qfsgrir, =13, (0)] sgr[ry 6@l (14
The condition imposed b{2,4(+) in Eq. (10) implies that
XFikaQu{sgrir, - rj, 0] - sgrir, = r, (1}, physically, a molecule should be on plaAgfor its action to

(13 be counted to the kinetic contribution of the fluxes. In Egs.
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FIG. 1. Snapshots of the simulatiorib.A straight channel with molecularly flat wallgl) A channel with periodic rectangular turns. The
scale of thex, z coordinates isr.

(13) and(14), Q4[sgn-)—sgr(-)] requires that a point along fluid is bounded by two solid surfaces of ttElLl) planes of

the line of center of the two molecules should be on plane an fcc lattice, the number of layers of which was varied: 4 or
for their interaction to be included in the potential contribu-5 for case I, 9 for case Il, and 13 for the square-shaped
tion. These are precisely the flux definitions of Irving andhumps(see Fig. 1 _ _ _
Kirkwood. The bin average implies an average taken over A solid atom interacts with the nearest six atoms in the
some neighboring planes in the normal direction. The aplattice by a harmonic potential of a spring constant,
proximation ofO;; =1 implies that one of the pairs of inter- k=3239.6/0” with a nearest neighbor distance of
acting molecules must be on the plane for a potential contri0-81470@. The solid atoms interact with the fluid atoms
bution to the fluxes. Both approaches may be a possibliirough an LJ potential witk=16e ando=0.91o. All the
source of error, especially for the case of inhomogeneouBarameters except for the fluid-solid interaction energy were
fluids. It should also be noted that Eq4.3) and (14) are chosen to simulate a system composed of argon and platinum
equivalent to those of MOP, E¢), if the flow is unidirec- W|t_h no _elgctron carriers presefit2]. The large value of the
tional, and the fluxes are normal to, and have no gradient irfluid-solid interaction energyeg;, was set for the purpose of
the flow direction. In this case, the streaming velocity, =~ Minimizing the degree of velocity slip. The solid atoms in
always vanishes. Because the fluxesfgrcentered af, do _the farthest rows of both walls from the fIU|d_S|de were fixed
not change as, varies in the streamwise direction, the areal SPace. In the second farthest roghpstparticles are used

can be regarded as being unbounded@gg=1 can thus be O Set the temperature constant at the boundary of the solid
applied all the time. ' walls (Fig. 2). These observe the Langevin equations, in

which parameters from Reff12] were used. The equation of
Il. SIMULATIONS motion was integrated according to the velocity Verlet algo-
A Methods rithm [13]. The time step was set to 0.002&m/e. The pe-
o ' ) ] riodic boundary condition was applied in all three directions.
~ Nonequilibrium molecular dynamic¢NEMD) simula- The measurements were carried out on planes of equal
tions were conducted to determine the pressure and hegitervals in both thex andz directions. For the kinetic con-
transfer using the expressions derived in the above sectiongipytion, each particle that crosses a plane is tracked at each
The fluid consists of monatomic molecules that interactsstep. First, it is checked whether a particle crosses a plane at
through Lennard-Jongs.J) 12-6 pairwise potential, a given time. Then, the time and velocity at the crossing is
o\2 [o\6 calculated using a standard Newton-Raphson algorithm. The
u(r) = 46{(—) - (‘) } internal energylJ;, for the particle is calculated by interpo-
lating with the values of the four previous time stdp%
where e and o denote the interaction energy and atomic di- The streaming velocity profile was obtained by collecting
ameter, respectively, andis the interatomic distance. The and averaging the values of the particles in each bin having

r
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0000000 ce 1o
’ . . ‘ . ‘ ‘ P';a:ﬂjzi M(Vj40], ~ UgUy)Qod(rj, —To,).
O Solid =
Fixed In ©000000 atoms This addition can be performed after the average is taken at
Space O O QQ O OO O the end of the time period. However, this is not so for Egs.
O Fluid (13) and (14), where the streaming velocity is nonlinearly
O O O OO0 () ( atoms related. For a steady-state case, the fluxes may be measured
Q O Q Q Q Q O after the mean velocity has been obtained. However, if there
: are some transient features in the problem, however small,
then the serial measurement would induce an error. There-
S:r?iitle ..... Q.O.O.O.O.O.O. fore, we conducted the same simulations twice using the

same initial conditions. The streaming velocity was obtained
‘ ‘ . . . . . after the first round simulations, and then, this was used for
the fluxes measured in the second round of simulations.
FIG. 2. A schematic drawing of the model system. The number  \jeasurements were also performed simultaneously with
of solid layers was larger in the simulated cases. the same grid size to compare the approximate formes
noted as IK1 in Ref[8]), which are often used in the litera-

the same size as the plane intervals. For the flux measur&dre,

ments, the center of each bin coincides with those of the 1

planes, and the average value in the bin is used as the streamP(fy,t) = —3 > m[o;(t) = U(Fyin,t) 1[0}(1) = U(Fyin, )]
ing velocity for the planes that share the center with the bin. bin | j€bin

For a given arbitrary position on a plane, the velocity was 1 .

calculated by interpolating the velocities of the plane and -3 2 2 ij(t)ij(t) , (15a
two other adjacent planes that share a boundary line with it. i(€bin) k(#])

It should be noted that the streaming velocity profile was not

calculated from the velocity data of particles crossing the - _ 1 - i

planes. The reason for this is as follows. On a plane, the ‘](rbinat)_v_bin 'ezbin [0j(0) = UCrbin, 1) JU;(1)
velocities that were collected and averaged were only for J

particles that crossed the plane. Since the interval between 1 R sy o -

the planes was finite, zero velocity or near-zero velocity par- 2.(€Ebm) kg.) Fik(OLV;(0) = dhin, )] - Fix(®) -
ticles were seldom on the planes and tended to be discrimi- . .

nated against in the measurements. It is not a problem for the (150

purpose of flux calculations, but it causes a deviation in therhese expressions are based on the previously mentioned
_streammg velocity. The discriminated values are q'Str'bUte‘%\pproximations and may result in errors. First, the fluid do-
in a rather symmetric manner about a zero point. If thémain was divided into bins in which the data were collected
streaming velocity is also zero, then the errors are largely,q averaged. That is, this gives averaged values over the

cancelled out and do not cause any noticeable deviation. lfoiume of the bin. More significant is the use of an approxi-

”Olt’ however, the mean velocity increases in the absolutgation forOy = 1. It has been reported that using these leads
value.

_ to spurious fluctuations in the stresses in a liquid-solid inter-
At the outset, Eqs(13) and(14) require both the stream- facig) region[8,14). The same conclusion is drawn in Sec.

ing velocity and each atomic velocity at the crossing at thgy| gt js also shown that the approximation leads to a large
same time. The former can be obtained only after some timgeyiation in the heat flux vector.

period for averaging. For a long averaging time period, this
may cause some technical problems, unless all the phase
space data during the simulation can be stored. In(Eg),

the kinetic component can be arranged into a form where the The fluid flow in two types of channel was considered
terms involving the streaming velocity can simply be added(Fig. 1). One was a straight channel consisting of two paral-
For example, lel walls of molecularly flat surfaces. The other was a chan-

B. Results

TABLE |. The parameters for the two simulations.

Case Domain siz& Body force Grid(x, 2) Temp.P No. of atoms Timée
Straight channe(l) 8.1X7.1X100.8 0.01 0.19, 0.28 0.7 6000 1000
Periodic turngll) 39.1X7.1X38.0 0.5 0.20, 0.19 0.8 10896 3000

®The scale of the parameters are as follows: Domain siZebody force=/o; grid=o; temperature €/kg; time=cVm/e.
The target temperature for the wall boundaries.
“The measurement time.
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FIG. 3. Density and velocity profiles for the straight channel.  FIG. 4. The normal stresse®,, and P,, for the case of a
The point where the fluid molecules were at the closest distance tstraight channel calculated using Ed3).
the solids,the contact pointwas aboutz=+430.

. - IK1 method also provides good results in the bulk region.
nel with periodic rectangular turns, where the two walls hadHowever, this does provide some spurious values at the in-

periodic square-shaped humpaternating byx positions in e tacial region, as has been pointed out in the literature

each wall. An external body force was applied in the + (g 14 This deviation comes from both molecular contribu-
direction to the fluid atoms in both cases. A unidirectionaliong inetic and potential. The kinetic contribution to the
flow field was.dth_anped in the first example, and a Moreyeayiation may be solely derived using the bin average
general flow field in the second example. The parameterf,ethod, while potential contribution may be derived by ap-
involved n each case are compared in Table |I. proximatingOy,, as well as using the average method. This
In the first example, an external force of 0ed& Was  ,oherty is shared by all the other components of the stress
applied. After an equilibration period of310°\m/e, @  anq heat fluxes in that the results obtained using the IK1
typical Poiseuille flow velocity profile developed, except for methog show significant deviation at the interfacial region.
small deviations in the region close to the walls. The fluxesrpe yalue ofP, in the bulk has the same value Bs, It

were measured on the planes using intervals of @.48d  jncreases in an oscillatory manner as the region nears the
0.28r in thex andz directions, respectively, employing EGs. gq|ig. While these normal stresses are measured in a non-

(13) and (14). The measurements were also performed forfqyilibrium state, it turns out that they are still close to those
bins whose sizes were the same as the intervals used in Egt the equilibrium state in this particular case. Finally, the
(15). The resulting density and velocity profiles are shown in,5 e of P,, coincides with the value d®,, in almost all the

Fig. 3. The point where the fluid molecules make contact okiq region(Fig. 6). This reflects the fact that the shear stress
are at the closest distance with the solids is alwut430. s symmetrical, because the fluid is composed of atoms with

(This distance is referred to as thentact pointhereafte). . jnternal degrees of freedom. It can also be seen that some
From the contact point to the solid, there is a highly struc-

tured region a few molecular diameters thick, and some dras- 5 , . .
tic changes are observed in the measured properties. Highe | 60y

resolution may be necessary to represent the characteristic _ — P K1 0 “;

of this region more clearly. In this study, we are more con-, = | 7.7p:: 1K1 ol 11

cerned about the overall state of the fluid though. In our 33 | e e e
results, the properties are exhibited well into the solid region = 15 ol e T
for the purpose of continuity in the data. However, the fea- = 2ofinl "
tures that largely belong to the solid region are not charac- & 1o |
terized in detail.

The use of MOP may provide the same results in the case
of a unidirectional flow. However, there are additional results |
that cannot be provided by the MOP technique. These are thi= L l
fluxes defined on the planes normal to the streamwise direc 0
tion, such as,,, P,, andJ,. These data reveal more features
of the dynamic behavior of the fluid flow. The results for the - w0 = 30 -
pressure tensor®,, and P,, are shown in Figs. 4 and 5. z (o)
Since no flow is developed in the direction, P,, remains
constant throughout the fluid domain. It is shown that Eq. FIG. 5. The normal stresse®,, and P,, for the case of a

(13) resolves the features well throughout this region. Thestraight channel calculated using the IK1 mettigd. (153)].
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FIG. 8. The heat fluxes], and J,, for the case of a straight

FIG. 6. The shear stresséy,, andP,,, for the case of a straight channel calculated using the IK1 methfl. (15b)].

channel calculated using E@L3).

bin due to the approximation @; = 1. The particle velocity
) . .. can be divided into the mean, or streaming, velocity and the
distance of one molecular diameter from the contact point.

The measurements of the heat flux in the normal directiorflUctuating velocity,v;=u(rj) +Av;. Then, theF-[v; ~u(n)]
also reproduced the trends shown in previous results usingrm can be divided intdF -[U(r})-u(r)] and Fj-[Av;
the MOP techniquéFigs. 7 and 8 That is, in addition to the —U(r)]. The former term can make a significant contribution
deviations at the interfacial region mentioned before, &o the heat flux if there is a sizeable gradient in the mean
higher level of fluctuations was observed in the heat fluxvelocity within the range of the intermolecular potential. The
normal to the wall, i.e.J,, in the IK1 results. Meanwhile, the results using both methods obey the energy conservation
heat flux in the streamwise directiod,, shows marked dif- laws for this particular flow, since the continuity equation for
ferences when the two results from E@s4) and(15b) are  energy involves only the divergence of the heat flux vector,
compared. A significant degree of heat transfer occurs in thevhich simply vanishes in the unidirectional case. However,
upstream direction when measured using 84, which is  £q (14 is a more accurate representation of llﬁ@-(z?-
missing from the_results using the IK_l techni_que_. This diff—l]) term and, therefore, the hydrodynamic equations.J This
ference solely arises from the potential contribution, and 'tpotential source of deviation has already been suggested by
originates from theF-[v;—u(r)] term. The[v;-u(r)] term  Toddet al.[9]. In this particular flow, the contribution td is
is defined in Ref[9] as the “plane peculiar velocity,” which mostly cancelled out, while that td, is added together to
is different from the usual peculiar velocityy;—u(f)]. In form a nonzero valu¢see Fig. 10
general, the position of particlg for v; does not coincide Next, the results for a channel with periodic rectangular
with that of the mean velocityj, on planer (see Fig. 9. In turns were considered. Here, the fluid is driven by a stronger
the IK1 method, on the other hand, the positions of the parforce, due to the increased flow resistance from the square-
ticle and the mean velocity correspond to that of the samehaped humps. The resulting flow and temperature field are

structure develops foP,, that deviates fronP,, within a

% ?\\\f ” thermal fluctuati
47 —0—Jx -4 iv ermal fluctuation
—0—Jz |
e | u(r.
&, L, . (%)
f’\s
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;’f«} 04 -0
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FIG. 9. In the ternﬁjk.[ﬁj—ﬁ(ﬂ], the position of particl¢ does
FIG. 7. The heat fluxes], and J,, for the case of a straight not necessarily coincide with that of planeTherefore, in general,
channel calculated using E¢lL4). the mean velocity of positior is not the same as that for the plane.
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Jor =t DA~ )+ Fo ), —u)J [ Sen(r,, - r,..) - Sgn(r,., - 1,.) |
0] 2)

k' k
x QO O

ForJ,: D, =-0,,; @), =2,

; o e] It For all cases,
' Fp==Fpp u,(r)=u,(r,),
k& i {F = —Fjp () =1,(r,) =0,
ForJ, : (1)].k =—(1)].,k,; (2)1,C =—(2)j.,k.
Ke o
J J

FIG. 10. When the unidirectional flow in Fig. 3 is considered,
there is no gradient in the properties in tkelirection. Therefore,
there are equal probabilities for the pajksandj’k’ occurring. The
contributions of these pairs to the heat flux are cancelled out,for
but superposed fai,.

- FIG. 12. The normal stresses for the case of a channel with
shown in Fig. 11, and a more general flow structure develberiodic rectangular turns. The upper graph shows dat®foand

oped. No noticeable unstable features were observed in thge jower graph shows data fBy,. These were calculated using Eq.
calculations, and a large velocity slip on the wall occurs, dug13).

to the relatively strong driving force. Large values in the

temperature distribution occur due to a similar reason. region very close to the waliFig. 12). This is because the
_Again, the energy input by the force is turned into heat byyensity is highly varied, and the flow is restricted in the
viscous dissipation inside the fluid, and this is transferred tq,q;mal direction. The stress in the normal direction to the
the walls. Alower temperature is observed in regions of stagiain flow maintains a constant value. Larger gradients are
nant flow or lower velocity gradients. The fluxes were mea-shown near the edges, where marked turns in the flow

sured on the planes using Eq$3) and(14). Amuch larger  gyreams occur. Accordingly, large concentrations of the shear
number of samples than normal was required to maintain the

same degree of resolution and accuracy as in the previou'=
example. A grid size of 0.20and 0.19 was used for the
andz directions, respectively. The calculations were carriec
out for 300@-Vm/e. The normal stresses in the tangential o
direction to the solid surface show large gradients in the B

-5

; !))ﬁ?/ﬂ]/i/fn’!{?f%f”m

20 A5 A0 -

w\

0 10 15 20
x(o)
FIG. 13. The shear stress and heat fluxes for a channel with
FIG. 11. The velocity fieldupper graph and the temperature periodic rectangular turns. The uppermost graph shows dai,for
distribution (lower graph for a channel with periodic rectangular the middle graph shows data fdy, and the lower graph shows data
turns. for J,. These were calculated using E¢s3) and (14).
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stress is observed the(Eig. 13. The values ofP,, andP,,  flux definition of Irving and Kirkwood, and they are equiva-

are the same as those of the previous example. lent to the MOP if the flow is unidirectional, and the fluxes
Finally, the heat fluxes are similarly formed from inside are normal to, and have no gradient in, the flow direction.
the fluid to the walls, and increase as it nears the wé&iig. The NEMD results for unidirectional flow show that the

13). There also exists significant heat flux in the upstreamK1 expressions, Eq(l5), is a poor representation of the
direction, as in the previous case. On the whole, the featuréahomogeneous state, which agrees with previous studies.
found in the unidirectional flow example are still observedOur method provides additional flux components defined in
regionally. In addition, we observed the features that arghe planes normal to the streamwise direction. It reveals that
found only in the general geometry case, such as stress cotiiere is a significant degree of heat flux in the upstream
centrations near edges and flux gradients parallel to the flovdirection. This is new information that is not provided by the

MOP and is missing in results using the IK1 method. This is

IV. CONCLUSIONS due to the so-called “plane peculiar velocity/;-U(r),

) which is different from the peculiar velocity,;—(rj). The
We have developed a method for calculating the heat an

momentum fluxes of a fluid in a general state. The metho otential part of the hgat flux contains the plane peculiar
can be used for resolving the state of a highly inhomogeYelocity in the form ofF-[v;~d(f)], where the position of
neous fluid away from equilibrium. This is a strong point of particlej does not necessarily coincide with the plane posi-

the method shared with the method of planes approactjio: - On the other hand, the IK1 method collects the po-
However, the latter method is only relevant for the flow of tential contribution in such a way that the two positions cor-
simple geometries, and only provides part of the flux com€Spond to the same bin, and, as in the case of a nanoscale-
ponents. Our expression can be applied to general flows, ajdth channel, the flow with a sizeable gradient within the
affords the remaining components that are not provided by2"9€ Of the molecular potential may result in a significant
the MOP. deviation in heat flux using the IK1 method. Equatigt8)

The flux expressions are derived from the definitions of2nd (14) are also applied to a more general geometry of a

instantaneous fluxes, which satisfy the conservation equé:_hannel with periodic rectangular turns. These results agree

tions at a given moment and, therefore, are valid in the non\_/vith those of the unidirectional case when the flow becomes

equilibrium state. Two approximate approaches that are ifiegionally unidirectional. Three-dimensional 'features were
common use are not adopted: g =1 approximation, and also resolved, such as the stress concentrations near edges,
coarse graining in space. First, the term involving Og and the flux gradients parallel to the flow.

operator is replaced by an equivalent in an integrated form

useful in avoiding the appro>.<|mat|on. Next, the.fluxes are ACKNOWLEDGMENT

measured on planes, and a time-average value is adopted to

avoid the average in the extra space dimension. The final We gratefully acknowledge that this work was supported
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