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We present a method for calculating the heat and momentum fluxes of general fluids away from equilibrium.
Our method is capable of resolving strongly inhomogeneous nonequilibrium flows, and applicable to three-
dimensional problems. Our flux expressions correspond to the flux definitions originally suggested by Irving
and Kirkwood[J. Chem. Phys.18, 817 (1950)] and are equivalent to the method of planes[Phys. Rev. E48,
4110(1993)] used to calculate flow in a simple geometry. Nonequilibrium molecular dynamics simulations are
performed showing that our method reveals a significant heat transfer in the upstream direction due to the
so-called “plane peculiar velocity.” In a general geometry, our method may resolve features such as stress
concentration near edges and flux gradients parallel to the flow.
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I. INTRODUCTION

The flux of heat and momentum provides essential infor-
mation in the understanding of fluid dynamic behavior, and
there is growing interest in the properties of inhomogeneous
fluids, which are fundamental to many nanosystems. These
fluxes can be directly related to the microscopic constituents
of a system, such as molecules, through the use of statistical
mechanics. The virial approach provides an equation for the
pressure of a homogeneous fluid[1]. A more direct approach,
however, is to specify the mechanical contributions of the
molecules to these fluxes, which originate from two different
types of molecular action. One is the kinetic component,
which comes from the transport of molecules, and the other
the potential component, manifested through molecular inter-
actions. Real fluid molecules, which have finite size and
many-body interactions, are difficult to define clearly on the
contributions. Even for a monatomic fluid that interacts
through pairwise interactions, there is still a problem with
the potential components. For a given infinitesimal area, we
need to determine which pair contributes to the flux through
the potential. The simplest choice would be a pair whose line
of center meets at a point within the area of interest. Using
this definition, Irving and Kirkwood derived hydrodynamic
equations employing classical statistical mechanics and ob-
tained expressions for the pressure tensor and heat flux vec-
tor of [2,3]
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andka; fl represents the ensemble average ofa with respect
to the distribution function,f:

ka; fl; E dr3Ndp3Nasr3N,p3N,rWdfsr3N,p3N,td.

The termsr3N andp3N represent the 3N coordinates and 3N
momenta of the system, respectively. AndOjk is given by
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In the above equations,j , k are the indices of the particles,N
is the total number of particles in the system, andm is the
mass of the particles. The termsvW j andrW j are the velocity and
position of particlej , respectively,uWsrWd is the streaming ve-
locity at positionrW, rW jk is the position of particlek relative to

that of particlej , andFW jk is the intermolecular force that acts
on particlek from particlej . The termf jk is the intermolecu-
lar potential. However, there is no unique definition of the
potential contribution to the fluxes. For example, Harashima
suggests that the molecules inside a prism contribute to the
fluxes on the prism base area when they interact with any
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molecule on the other side of the boundary surface that con-
tains the base area[4]. There are also many other choices
that all conform to the conservation equations[5]. However,
the definition of Harashima may not be robust[6]. Another
study proposed an additional criterion for a unique definition,
which results in the expressions of Irving and Kirkwood[7].

Meanwhile, it can be seen that Eq.(1) requires the en-
semble average. This results from the derivation of Eq.(1)
where the mass, momentum, and energy densities are ini-
tially defined according to the ensemble average with respect
to the distribution function. For example, the density is given
by

rsrW,td = o
j=1

N

kmdsrW j − rWd; fl.

The procedure is, however, time consuming to implement in
molecular simulations. Alternatively, expressions for the
fluxes can be used to satisfy the conservation equations at
any given instant for a defined system[3]
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These equations are based on theinstantaneousdensity of
the mass, momentum, and energy. For example, the density
is given by

rsrW,td = o
j=1

N

mdsrW j − rWd.

These expressions can be evaluated for a single system tra-
jectory, which is particularly useful in molecular simulations.
However, there remains a critical difficulty in evaluating the
operatorOjk using these expressions. This operator acts on
the delta function and produces an infinite sum of its deriva-
tives. It becomes increasingly difficult to evaluate higher-
order derivatives directly, which, on the other hand, may not
decay fast enough to be neglected in an inhomogeneous
fluid. Often found in the literature is anOjk.1 approxima-
tion, which is valid only in the cases of homogeneous or
weakly inhomogeneous fluids. Toddet al. overcame the
above situation by adopting measures that include manipula-
tion in the reciprocal space[8]. They introduced the so-called
“method of planes” (MOP), which does not require evaluat-
ing Ojk [8–10]:
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Here,A is the area of measurement,y is the coordinate for
the direction normal to the flow, anda denotesx, y, or z. The
term tj ,l is the time when particlej crosses the planel times
during the time periodt, and sgn is the sign function.

However, the MOP is still limited in that it is derived
from, and applicable only to, unidirectional flows. The flow
direction needs to be tangential to the measurement surface,
and only part of the flux components is provided: for ex-
ample,Pxx, Pxy, or Jx are not given in terms of the coordi-
nates used in Eq.(5). In addition, the flux gradients in the
tangential direction to the measurement surface, for example,
the x or z directions, are not considered in the derivation.

While the MOP is a valuable tool for probing many phe-
nomena in inhomogeneous fluids, some problems inevitably
involve the fluxes not resolved well using this method. For
example, it may be necessary to resolve a flux that varies in
more than one direction, or the gradient of a flux in the flow
direction. One recent study used a method that measures the
potential part of the pressure tensor in a similar manner to
that used in this work[11]. The authors of the study, how-
ever, relied on physical arguments for introducing this ap-
proach. To the best of our knowledge, there has been no
other study on this issue published in the literature.

We begin with the expressions for instantaneous fluxes,
Eq. (4), and then we derive the pressure tensor and heat flux
vector that not only accurately represent a strongly inhomo-
geneous fluid in nonequilibrium state, but also resolve the
state in a general geometry. The first step is to replace the
operatorOjk by a more manageable operator. The final ex-
pressions correspond to the original flux definition of Irving
and Kirkwood. For the flow in a simple geometry, these are
equivalent to the MOP. Section II is devoted to the derivation
of the expressions for fluxes, which are evaluated for two
types of nanoscale fluid flow channels in Sec. III. The final
section contains our conclusions.

II. THEORETICAL MODELS FOR FLUXES

A. Alternative form of Ojk

In the original derivation of the pressure tensor by Irving
and Kirkwood[2], the operatorOjk was introduced when the
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two delta functions according to the positions of two par-
ticles were expanded using a given relative position. The first
few terms of the expansion are relatively easy to evaluate,
and are adequate to model homogeneous and weakly inho-
mogeneous fluids. However, the higher-order derivatives of
the delta function are increasingly difficult to handle, and
they are of a non-negligible size for highly inhomogeneous
fluids. The situation may be relieved using an integrated
form of the delta function, since this smoothes out the ex-
treme behavior of the function. It is interesting to note that
the integrated version ofOjk has already been used in Ref.
[2]. Applying it to the delta function gives the following
relationships:
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This can be checked easily from the fact that
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Therefore, the delta function acted on byOjk can be replaced
by an integrated form of the delta function[15,16]. Thus Eq.
(4) can be rewritten as
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where the functional dependence onrW and t of the variables
on the right-hand side has been omitted. These representa-

tions of the fluxes have a major advantage over previous
representations in that they enable a direct evaluation of the
contribution without any truncation of the terms. In the fol-
lowing section, these are elaborated on further, to provide
more accessible forms for calculations.

B. Pressure tensor and heat flux vector

As in the MOP approach, the fluxes were measured on a
plane across which momentum and energy can be ex-
changed. This can be compared with measurements on a bin.
The measured fluxes are averaged on the planeAo of a finite
areaDA=DraDrb centered atrWo=sroa ,rob ,rogd as

G̃srWo,td ; kGsrW,tdlDA

;
1
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E
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draE
rob−Drb/2

rob+Drb/2

drbGsrW,td,

wherea, b, andg are the indices for the rectangular coordi-
nates, andg is chosen as the coordinate normal to the plane:
for example,rg=y in the coordinates of Eq.(5). The time
average is also defined as

ĜsrWo,tod ;
1

t
E
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dt G̃srWo,td.

First, the kinetic contribution to the pressure tensor,PK, was
considered
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In the form of components, this is
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The termPga represents the pressure tensor applied in thea
direction on a plane normal tog. The average on the plane
gives
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Next, an average of Eq.(10) may need to be taken to make it
more accessible. A usual approach would be to take an aver-
age over a small, but finite, dimension,Drg, or to use coarse
graining in the extra space dimension. This approach is
equivalent to the bin average. The average over the volume
rather than the area can be avoided if coarse graining over
time is adopted instead. This approach was originally
adopted by MOP, but here it is extended to a more general
geometry. For a particlej that crosses the plane once during
a given time period, with a known positionrg, fixed in space,
it follows that

v jgstdd„r jgstd − rg… =
1

2

d

dt
sgnfr jgstd − rgg

= dstj − tdsgnfv jgstdg, s11d

wheretj is the time when particlej is at rg. For v jgÞ0,
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Next, the intermolecular contribution,PU, is considered:

PUsrW,td = −
1

2o
j

N

o
ksÞ jd

N

rW jkstdFW jkstdE
0

1

dad„rW − rW jstd − arW jkstd….

With

E
0

1

dadsrW − rW j − arW jkd =E
0

1

dadsra − r ja − ar jkad

3dsrb − r jb − ar jkbd

3dsrg − r jg − ar jkgd,

we obtain

KE
0

1

dadsrW − rW j − arW jkdL
DA

=
1

DA
V1E

0

1

dadsrog − r jg − ar jkgd

=
1

2DA
V1

1

r jkg

fsgnsrog − r jgd − sgnsrog − rkgdg,

whereV1 is defined as

V1 =5
1, if there existsa [ f0,1g that satisfies

roa −
Dra

2
, r ja + ar jkas=rad , roa +

Dra

2
androb −

Drb

2
, r jb + ar jkbs=rbd , rob +

Drb

2

0, otherwise.

,

We now obtain

P̃ga
U srWo,td = −

1

4DA
o

j

N

o
ksÞ jd

N

FjkastdV1hsgnfrog − r jgstdg

− sgnfrog − rkgstdgj.

We can combine both contributions and obtain an expres-
sion for the pressure tensor. It follows that

P̂gasrW,td =
1

DAt
o

j
o
t j ,l

mfv jastj ,ld − uasrW,tj ,ldgfv jgstj ,ld

− ugsrW,tj ,ldg
1

uv jgstj ,ldu
−

1

4DAt
E

t−t/2

t+t/2

dt̃o
j

N

o
ksÞ jd

N

3Fjkast̃dV1hsgnfrg − r jgst̃dg − sgnfrg − rkgst̃dgj,

s13d

where the subscriptso for rW and t are omitted. Ift corre-
sponds to a given time step solving the equations of motion,
then the integrand in the second term on the right-hand side
of Eq. (13) may remain constant, and the operations1/tdedt̃
can be removed. It is straightforward to derive the expression
for the heat flux vector in a similar manner:
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The condition imposed byVods·d in Eq. (10) implies that
physically, a molecule should be on planeAo for its action to
be counted to the kinetic contribution of the fluxes. In Eqs.
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(13) and (14), V1fsgns·d−sgns·dg requires that a point along
the line of center of the two molecules should be on planeAo
for their interaction to be included in the potential contribu-
tion. These are precisely the flux definitions of Irving and
Kirkwood. The bin average implies an average taken over
some neighboring planes in the normal direction. The ap-
proximation ofOij .1 implies that one of the pairs of inter-
acting molecules must be on the plane for a potential contri-
bution to the fluxes. Both approaches may be a possible
source of error, especially for the case of inhomogeneous
fluids. It should also be noted that Eqs.(13) and (14) are
equivalent to those of MOP, Eq.(5), if the flow is unidirec-
tional, and the fluxes are normal to, and have no gradient in,
the flow direction. In this case, the streaming velocity,ug,
always vanishes. Because the fluxes onAo centered atrWo do
not change asrWo varies in the streamwise direction, the area
can be regarded as being unbounded andV0,1=1 can thus be
applied all the time.

III. SIMULATIONS

A. Methods

Nonequilibrium molecular dynamics(NEMD) simula-
tions were conducted to determine the pressure and heat
transfer using the expressions derived in the above sections.
The fluid consists of monatomic molecules that interacts
through Lennard-Jones(LJ) 12-6 pairwise potential,

usrd = 4eFSs

r
D12

− Ss

r
D6G ,

wheree ands denote the interaction energy and atomic di-
ameter, respectively, andr is the interatomic distance. The

fluid is bounded by two solid surfaces of the(111) planes of
an fcc lattice, the number of layers of which was varied: 4 or
5 for case I, 9 for case II, and 13 for the square-shaped
humps(see Fig. 1).

A solid atom interacts with the nearest six atoms in the
lattice by a harmonic potential of a spring constant,
k=3239.6e /s2 with a nearest neighbor distance of
0.814706s. The solid atoms interact with the fluid atoms
through an LJ potential withesf=16e andssf=0.91s. All the
parameters except for the fluid-solid interaction energy were
chosen to simulate a system composed of argon and platinum
with no electron carriers present[12]. The large value of the
fluid-solid interaction energy,esf, was set for the purpose of
minimizing the degree of velocity slip. The solid atoms in
the farthest rows of both walls from the fluid side were fixed
in space. In the second farthest rows,ghostparticles are used
to set the temperature constant at the boundary of the solid
walls (Fig. 2). These observe the Langevin equations, in
which parameters from Ref.[12] were used. The equation of
motion was integrated according to the velocity Verlet algo-
rithm [13]. The time step was set to 0.0025sÎm/e. The pe-
riodic boundary condition was applied in all three directions.

The measurements were carried out on planes of equal
intervals in both thex andz directions. For the kinetic con-
tribution, each particle that crosses a plane is tracked at each
step. First, it is checked whether a particle crosses a plane at
a given time. Then, the time and velocity at the crossing is
calculated using a standard Newton-Raphson algorithm. The
internal energy,Uj, for the particle is calculated by interpo-
lating with the values of the four previous time steps[9].

The streaming velocity profile was obtained by collecting
and averaging the values of the particles in each bin having

FIG. 1. Snapshots of the simulations.(I) A straight channel with molecularly flat walls.(II ) A channel with periodic rectangular turns. The
scale of thex, z coordinates iss.
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the same size as the plane intervals. For the flux measure-
ments, the center of each bin coincides with those of the
planes, and the average value in the bin is used as the stream-
ing velocity for the planes that share the center with the bin.
For a given arbitrary position on a plane, the velocity was
calculated by interpolating the velocities of the plane and
two other adjacent planes that share a boundary line with it.
It should be noted that the streaming velocity profile was not
calculated from the velocity data of particles crossing the
planes. The reason for this is as follows. On a plane, the
velocities that were collected and averaged were only for
particles that crossed the plane. Since the interval between
the planes was finite, zero velocity or near-zero velocity par-
ticles were seldom on the planes and tended to be discrimi-
nated against in the measurements. It is not a problem for the
purpose of flux calculations, but it causes a deviation in the
streaming velocity. The discriminated values are distributed
in a rather symmetric manner about a zero point. If the
streaming velocity is also zero, then the errors are largely
cancelled out and do not cause any noticeable deviation. If
not, however, the mean velocity increases in the absolute
value.

At the outset, Eqs.(13) and(14) require both the stream-
ing velocity and each atomic velocity at the crossing at the
same time. The former can be obtained only after some time
period for averaging. For a long averaging time period, this
may cause some technical problems, unless all the phase
space data during the simulation can be stored. In Eq.(10),
the kinetic component can be arranged into a form where the
terms involving the streaming velocity can simply be added.
For example,

P̃ga
K =

1

DA
o
j=1

N

msv jav jg − uaugdVodsr jg − rogd.

This addition can be performed after the average is taken at
the end of the time period. However, this is not so for Eqs.
(13) and (14), where the streaming velocity is nonlinearly
related. For a steady-state case, the fluxes may be measured
after the mean velocity has been obtained. However, if there
are some transient features in the problem, however small,
then the serial measurement would induce an error. There-
fore, we conducted the same simulations twice using the
same initial conditions. The streaming velocity was obtained
after the first round simulations, and then, this was used for
the fluxes measured in the second round of simulations.

Measurements were also performed simultaneously with
the same grid size to compare the approximate formulas(de-
noted as IK1 in Ref.[8]), which are often used in the litera-
ture,
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These expressions are based on the previously mentioned
approximations and may result in errors. First, the fluid do-
main was divided into bins in which the data were collected
and averaged. That is, this gives averaged values over the
volume of the bin. More significant is the use of an approxi-
mation forOjk.1. It has been reported that using these leads
to spurious fluctuations in the stresses in a liquid-solid inter-
facial region[8,14]. The same conclusion is drawn in Sec.
III B. It is also shown that the approximation leads to a large
deviation in the heat flux vector.

B. Results

The fluid flow in two types of channel was considered
(Fig. 1). One was a straight channel consisting of two paral-
lel walls of molecularly flat surfaces. The other was a chan-

TABLE I. The parameters for the two simulations.

Case Domain sizea Body force Grid(x, z) Temp.b No. of atoms Timec

Straight channel(I) 8.137.13100.8 0.01 0.19, 0.28 0.7 6000 1000

Periodic turns(II ) 39.137.1338.0 0.5 0.20, 0.19 0.8 10896 3000

aThe scale of the parameters are as follows: Domain size=s3; body force=e /s; grid=s; temperature=e /kB; time=sÎm/e.
bThe target temperature for the wall boundaries.
cThe measurement time.

FIG. 2. A schematic drawing of the model system. The number
of solid layers was larger in the simulated cases.
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nel with periodic rectangular turns, where the two walls had
periodic square-shaped humpsalternating byx positions in
each wall. An external body force was applied in the +x
direction to the fluid atoms in both cases. A unidirectional
flow field was developed in the first example, and a more
general flow field in the second example. The parameters
involved in each case are compared in Table I.

In the first example, an external force of 0.01e /s was
applied. After an equilibration period of 13103sÎm/e, a
typical Poiseuille flow velocity profile developed, except for
small deviations in the region close to the walls. The fluxes
were measured on the planes using intervals of 0.19s and
0.28s in thex andz directions, respectively, employing Eqs.
(13) and (14). The measurements were also performed for
bins whose sizes were the same as the intervals used in Eq.
(15). The resulting density and velocity profiles are shown in
Fig. 3. The point where the fluid molecules make contact or
are at the closest distance with the solids is aboutz= ±43s.
(This distance is referred to as thecontact pointhereafter.)
From the contact point to the solid, there is a highly struc-
tured region a few molecular diameters thick, and some dras-
tic changes are observed in the measured properties. Higher
resolution may be necessary to represent the characteristics
of this region more clearly. In this study, we are more con-
cerned about the overall state of the fluid though. In our
results, the properties are exhibited well into the solid region
for the purpose of continuity in the data. However, the fea-
tures that largely belong to the solid region are not charac-
terized in detail.

The use of MOP may provide the same results in the case
of a unidirectional flow. However, there are additional results
that cannot be provided by the MOP technique. These are the
fluxes defined on the planes normal to the streamwise direc-
tion, such asPxx, Pxz, andJx. These data reveal more features
of the dynamic behavior of the fluid flow. The results for the
pressure tensorsPxx and Pzz are shown in Figs. 4 and 5.
Since no flow is developed in thez direction, Pzz remains
constant throughout the fluid domain. It is shown that Eq.
(13) resolves the features well throughout this region. The

IK1 method also provides good results in the bulk region.
However, this does provide some spurious values at the in-
terfacial region, as has been pointed out in the literature
[8,14]. This deviation comes from both molecular contribu-
tions, kinetic and potential. The kinetic contribution to the
deviation may be solely derived using the bin average
method, while potential contribution may be derived by ap-
proximatingOjk, as well as using the average method. This
property is shared by all the other components of the stress
and heat fluxes in that the results obtained using the IK1
method show significant deviation at the interfacial region.
The value ofPxx in the bulk has the same value asPzz. It
increases in an oscillatory manner as the region nears the
solid. While these normal stresses are measured in a non-
equilibrium state, it turns out that they are still close to those
of the equilibrium state in this particular case. Finally, the
value ofPxz coincides with the value ofPzx in almost all the
fluid region(Fig. 6). This reflects the fact that the shear stress
is symmetrical, because the fluid is composed of atoms with
no internal degrees of freedom. It can also be seen that some

FIG. 3. Density and velocity profiles for the straight channel.
The point where the fluid molecules were at the closest distance to
the solids,the contact point, was aboutz= ±43s.

FIG. 4. The normal stresses,Pxx and Pzz, for the case of a
straight channel calculated using Eq.(13).

FIG. 5. The normal stresses,Pxx and Pzz, for the case of a
straight channel calculated using the IK1 method[Eq. (15a)].
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structure develops forPxz that deviates fromPzx within a
distance of one molecular diameter from the contact point.

The measurements of the heat flux in the normal direction
also reproduced the trends shown in previous results using
the MOP technique(Figs. 7 and 8). That is, in addition to the
deviations at the interfacial region mentioned before, a
higher level of fluctuations was observed in the heat flux
normal to the wall, i.e.,Jz, in the IK1 results. Meanwhile, the
heat flux in the streamwise direction,Jx, shows marked dif-
ferences when the two results from Eqs.(14) and (15b) are
compared. A significant degree of heat transfer occurs in the
upstream direction when measured using Eq.(14), which is
missing from the results using the IK1 technique. This dif-
ference solely arises from the potential contribution, and it

originates from theFW jk ·fvW j −uWsrWdg term. ThefvW j −uWsrWdg term
is defined in Ref.[9] as the “plane peculiar velocity,” which
is different from the usual peculiar velocity,fvW j −uWsrW jdg. In
general, the position of particlej for vW j does not coincide
with that of the mean velocity,uW, on planerW (see Fig. 9). In
the IK1 method, on the other hand, the positions of the par-
ticle and the mean velocity correspond to that of the same

bin due to the approximation ofOjk.1. The particle velocity
can be divided into the mean, or streaming, velocity and the

fluctuating velocity,vW j =uWsrW jd+DvW j. Then, theFW jk ·fvW j −uWsrWdg
term can be divided intoFW jk ·fuWsrW jd−uWsrWdg and FW jk ·fDvW j

−uWsrWdg. The former term can make a significant contribution
to the heat flux if there is a sizeable gradient in the mean
velocity within the range of the intermolecular potential. The
results using both methods obey the energy conservation
laws for this particular flow, since the continuity equation for
energy involves only the divergence of the heat flux vector,
which simply vanishes in the unidirectional case. However,

Eq. (14) is a more accurate representation of theFW jk ·svW j

−uWd term and, therefore, the hydrodynamic equations. This
potential source of deviation has already been suggested by
Toddet al. [9]. In this particular flow, the contribution toJz is
mostly cancelled out, while that toJx is added together to
form a nonzero value(see Fig. 10).

Next, the results for a channel with periodic rectangular
turns were considered. Here, the fluid is driven by a stronger
force, due to the increased flow resistance from the square-
shaped humps. The resulting flow and temperature field are

FIG. 6. The shear stresses,Pxz andPzx, for the case of a straight
channel calculated using Eq.(13).

FIG. 7. The heat fluxes,Jx and Jz, for the case of a straight
channel calculated using Eq.(14).

FIG. 8. The heat fluxes,Jx and Jz, for the case of a straight
channel calculated using the IK1 method[Eq. (15b)].

FIG. 9. In the termFW jk .fvW j −uWsrWdg, the position of particlej does
not necessarily coincide with that of planerW. Therefore, in general,
the mean velocity of positionrW j is not the same as that for the plane.
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shown in Fig. 11, and a more general flow structure devel-
oped. No noticeable unstable features were observed in the
calculations, and a large velocity slip on the wall occurs, due
to the relatively strong driving force. Large values in the
temperature distribution occur due to a similar reason.

Again, the energy input by the force is turned into heat by
viscous dissipation inside the fluid, and this is transferred to
the walls. A lower temperature is observed in regions of stag-
nant flow or lower velocity gradients. The fluxes were mea-
sured on the planes using Eqs.(13) and(14). A much larger
number of samples than normal was required to maintain the
same degree of resolution and accuracy as in the previous
example. A grid size of 0.20s and 0.19s was used for thex
andz directions, respectively. The calculations were carried
out for 3000sÎm/e. The normal stresses in the tangential
direction to the solid surface show large gradients in the

region very close to the walls(Fig. 12). This is because the
density is highly varied, and the flow is restricted in the
normal direction. The stress in the normal direction to the
main flow maintains a constant value. Larger gradients are
shown near the edges, where marked turns in the flow
streams occur. Accordingly, large concentrations of the shear

FIG. 10. When the unidirectional flow in Fig. 3 is considered,
there is no gradient in the properties in thex direction. Therefore,
there are equal probabilities for the pairsjk and j8k8 occurring. The
contributions of these pairs to the heat flux are cancelled out forJz,
but superposed forJx.

FIG. 11. The velocity field(upper graph) and the temperature
distribution (lower graph) for a channel with periodic rectangular
turns.

FIG. 12. The normal stresses for the case of a channel with
periodic rectangular turns. The upper graph shows data forPzz and
the lower graph shows data forPxx. These were calculated using Eq.
(13).

FIG. 13. The shear stress and heat fluxes for a channel with
periodic rectangular turns. The uppermost graph shows data forPzx,
the middle graph shows data forJx, and the lower graph shows data
for Jz. These were calculated using Eqs.(13) and (14).
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stress is observed there(Fig. 13). The values ofPxz andPzx
are the same as those of the previous example.

Finally, the heat fluxes are similarly formed from inside
the fluid to the walls, and increase as it nears the walls(Fig.
13). There also exists significant heat flux in the upstream
direction, as in the previous case. On the whole, the features
found in the unidirectional flow example are still observed
regionally. In addition, we observed the features that are
found only in the general geometry case, such as stress con-
centrations near edges and flux gradients parallel to the flow.

IV. CONCLUSIONS

We have developed a method for calculating the heat and
momentum fluxes of a fluid in a general state. The method
can be used for resolving the state of a highly inhomoge-
neous fluid away from equilibrium. This is a strong point of
the method shared with the method of planes approach.
However, the latter method is only relevant for the flow of
simple geometries, and only provides part of the flux com-
ponents. Our expression can be applied to general flows, and
affords the remaining components that are not provided by
the MOP.

The flux expressions are derived from the definitions of
instantaneous fluxes, which satisfy the conservation equa-
tions at a given moment and, therefore, are valid in the non-
equilibrium state. Two approximate approaches that are in
common use are not adopted: theOjk.1 approximation, and
coarse graining in space. First, the term involving theOjk
operator is replaced by an equivalent in an integrated form
useful in avoiding the approximation. Next, the fluxes are
measured on planes, and a time-average value is adopted to
avoid the average in the extra space dimension. The final
expressions, Eqs.(13) and (14), correspond to the original

flux definition of Irving and Kirkwood, and they are equiva-
lent to the MOP if the flow is unidirectional, and the fluxes
are normal to, and have no gradient in, the flow direction.

The NEMD results for unidirectional flow show that the
IK1 expressions, Eq.(15), is a poor representation of the
inhomogeneous state, which agrees with previous studies.
Our method provides additional flux components defined in
the planes normal to the streamwise direction. It reveals that
there is a significant degree of heat flux in the upstream
direction. This is new information that is not provided by the
MOP and is missing in results using the IK1 method. This is
due to the so-called “plane peculiar velocity,”vW j −uWsrWd,
which is different from the peculiar velocity,vW j −uWsrW jd. The
potential part of the heat flux contains the plane peculiar

velocity in the form ofFW ·fvW j −uWsrWdg, where the position of
particle j does not necessarily coincide with the plane posi-
tion, rW. On the other hand, the IK1 method collects the po-
tential contribution in such a way that the two positions cor-
respond to the same bin, and, as in the case of a nanoscale-
width channel, the flow with a sizeable gradient within the
range of the molecular potential may result in a significant
deviation in heat flux using the IK1 method. Equations(13)
and (14) are also applied to a more general geometry of a
channel with periodic rectangular turns. These results agree
with those of the unidirectional case when the flow becomes
regionally unidirectional. Three-dimensional features were
also resolved, such as the stress concentrations near edges,
and the flux gradients parallel to the flow.
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